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Abstract 

A systematic theoretical analysis is made of the kinds 
of structural irregularity which occur in biological 
systems. The theoretical problems investigated were: 
(1) the precise meaning of the term 'paracrystar when 
applied to biological systems such as tropomyosin 
tactoids, collagen fibrils, keratin and the myelin sheath 
of nerve; (2) the relationship between the paracrystal 
and liquid-theory descriptions of disorder which have 
recently been applied to the structure of collagen 
fibrils; (3) how structural irregularity affects the 
diffraction patterns (X-ray, neutron and electron) 
which are commonly used to investigate the structure 
of these systems experimentally. The conclusions are: 
(I) paracrystalline disorder of the first kind refers to a 
spatially disordered crystal but for biological systems it 
would generally be impracticable to distinguish this 
from thermal disorder; (2) paracrystalline disorder of 
the second kind provides a conceptually clumsy 
method for describing liquid-like systems; (3) para- 
crystal models are not strictly valid for finite systems; 
(4) modern liquid theory, as applied, for example, to the 
structure of the collagen fibrils, provides an elegant and 
economical alternative to paracrystal theory for dis- 
order of the second kind; (5) the presence of peaks in 
diffraction patterns from biological systems does not 
necessarily imply that the system has very much 
regularity, i.e. it is not evidence for the existence of a 
lattice. 

1. Introduction 

Biological systems are not usually perfect crystals - the 
arrangements of their constituent molecules are 
generally less ordered. Such disordered systems are 
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commonly referred to as 'paracrystals'. This term has 
been used, for example, to describe tactoids of tropo- 
myosin (O'Brien, Gillis & Couch, 1975; Stewart & 
McLachlan, 1976). Often in such cases no quantitative 
description of the disorder is intended and in con- 
sequence the only structural information conveyed is 
that the system is not a perfect crystal. 

Hosemann & Bagchi (1962) defined two kinds of 
paracrystalline disorder. Disorder of the first kind 
applies to systems with some degree of long-range 
order, i.e. truly disordered crystals. Systems in which 
there is no long-range order are said to exhibit disorder 
of the second kind. Hosemann (1973) has indicated 
that the purpose of the paracrystal theory of such 
systems is to enable the structure of liquid-like states to 
be described. Hosemann (1951) applied his para- 
crystal theory to the interpretation of X-ray diffraction 
patterns from (t- and fl-keratin and from collagen. More 
recently the stacking of lipid bilayers in the myelin 
sheaths of nerves has been described as paracrystalline 
with disorder of the second kind (Blaurock & Nelander, 
1976; Nelander & Blaurock, 1978; Hybl, 1976, 1977). 
Collagen fibrils have recently been described as para- 
crystals by Hosemann, Dreissig & Nemetschek (1974). 

Disorder of the second kind is equivalent to the Prins 
(1931) theory of the liquid state; modern theories are 
based on Mayer's theory of dense gases (Salpetre, 
1958) and have recently been applied to the structure of 
collagen fibrils. In these fibrils there are two distinct 
sorts of disorder possible: a lateral irregularity 
(Woodhead-Galloway & Machin, 1976a) and an 
irregularity involving the axial relationships between 
the rod-like molecules (Cox, Grant &Horne ,  1967; 
Woodhead-Galloway & Young, 1978). Equatorial X- 
ray diffraction patterns from elastoidin spicules (fish 
fin-ray collagen fibrils) can be satisfactorily accounted 
for by a modern liquid-theory description of the lateral 
irregularity (Woodhead-Galloway et al., 1978). These 
results have led to a liquid-crystal model for the 
collagen fibril (Hukins & Woodhead-Galloway, 1977, 
© 1980 International Union of Crystallography 
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1978; Hukins, 1978) which in many respects resembles 
the paracrystal model of Hosemann, Dreissig & 
Nemetschek (1974). (It should be noted that other kinds 
of models exist - for a review see Miller, 1976.) 

Our purpose is to consider systematically the various 
kinds of structural irregularity which can occur in bio- 
logical systems. In consequence we achieve a clearer 
understanding of the term 'paracrystal '  and are able to 
relate it to the liquid theory description of disorder. We 
also consider the effect of these kinds of irregularity on 
the diffraction patterns (X-ray, neutron or electron) 
which are used to study the structures of such systems 
experimentally. Note that disorder may be considered 
in one dimension as in, for example, the stacking of 
lipid bilayers in myelin. Thus our arguments can be 
developed in one dimension and still apply to a real 
biological system. Structural irregularity can equally 
well be considered in two dimensions, as in the dis- 
tribution of visual pigment in the retina (Blasie & 
Worthington, 1969) or in three dimensions - the argu- 
ments are essentially the same and some of the results 
readily generalized. 

2. Definitions and notation 

Consider a one-dimensional array of N identical entities 
which we term 'atoms' but which might equally well be 
molecules, crystallites, microfibrils or lipid bilayers. Let 
x n denote the instantaneous position of the nth atom. 
Then the structure may be described by a correlation 
function defined by 

P(x) =(,,~,m fi(x + x,,-- Xm)~, 

where the sum is over all N atoms. Throughout this 
paper brackets ( )  denote an average over all relevant 
states and fi is the Dirac delta function. This equation 
may be written in the form 

P(x) :  N[~(x)+ (1/N)ln~ m (~(x -+- x n -- Xm)~]. (1) 

In order to relate the structure P(x) to its diffraction 
pattern we calculate its Fourier transform 

S ( q ) =  f P(x)exp(-iqx)dx 

:N{1 +(1/N)(n~meXp[--iq(Xn--Xm)])}. (2) 

If f(q) is the Fourier transform of an atom, the 
intensity distribution of the diffraction pattern is given 
by 

I(q) = f2(q)S(q). (3) 

For many purposes it may be more informative to 
consider the form of S(q), which describes interference 
effects, than I(q), which depends also on the structure 
of the scattering atoms in a particular system. Note 
that q is related to 0, the Bragg angle, by 

q = (4n/2) sin 0, 

where 2 is the wavelength of the waves used in the 
diffraction experiment. 

3. Thermal disorder of  a regular lattice 

The case discussed here is familiar in X-ray crystallog- 
raphy. We consider it in order to develop our argu- 
ments in later sections. Note that we consider atoms as 
independent oscillators - this is the familiar model 
which was used by Einstein to derive his expression for 
the specific heat of a crystal (see, for example, 
Guggenheim, 1959). 

We denote atomic positions by 

x n = nd + u n, 
where d is the distance between equi-spaced lattice 
points and u,, is the time-dependent displacement of the 
nth atom from its lattice point. From (2), 

S(q)= N{ l + (1/N)(nZ, nexp[-iq(nd + u,,- md 

Um 'l} 
= N i l  + ( l /N)  ~. exp[-iq(n-m)dl 

n : c - m  

x (exp (--iqun) exp (iqUm))} 

= N i l  + ( l /N)  ~. exp[-iq(n-m)dl 
t7 :¢:m 

exp (--iqun) ) (exp (--iqUm) ) }, x ( 

the last equality arises because the oscillators are inde- 
pendent. We now use the Born (1942) theorem which 
states that 

(exp(--qun))=exp[--(qZ/2)(uZ,,)] (4) 

(see Appendix, Note 1) and define the root-mean- 
square displacement,/z, by 

= 

which is independent of n, to obtain 

S ( q ) =  N{1 + exp ( -2W)(1 /N)  ~ exp[-iq(n- m)d]}, 
n ~:rr t  

W = q2 p2/2" (5) 

Now, e x p ( - 2 W )  is the Debye-Waller factor which 
appears in X-ray crystallography. As W tends to 0 this 
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factor tends to 1 and the stationary lattice result is 
recovered, i.e. 

Slatt ice(q)=N{1 + ( l /N)  ~ e x p [ - i q ( n - m ) d ] } .  (6) 
n : c m  

From (5) and (6), we obtain for a thermally 
disordered lattice 

S ( q ) = e x p ( - - 2 W ) S , a t , c e ( q )  + N[1 -- exp (--2 W)]. 
(7) 

The first term in (7) indicates that the interference 
function S l a t t i c e ,  which is non-zero only at the so-called 
'reciprocal-lattice points' will diminish with increasing 
q; the second indicates that diffuse intensity will appear 
between the reciprocal-lattice points. 

4. Static disorder of  the first kind 

Our equation (7) has the same form as equation (2) of 
Blaurock & Nelander (1976). Their equation describes 
interference effects expected from a lattice which is 
slightly perturbed in that atoms have static displace- 
ments from equi-spaced lattice points. The two 
equations are identical if the distribution of static dis- 
placements is Gaussian and there is no correlation 
between the displacements from different sites. In this 
case 2W is identified as qZ ~z where ~2 is the mean- 
square static displacement of the atoms from the lattice 
sites. 

5. Simultaneous disorder of  the first kind and thermal 
disorder 

We now consider the more realistic case where the 
system with disorder of the first kind is simultaneously 
subject to thermal disorder and define the following: x ° 
= site about which nth atom vibrates = nd + V,, (not a 
perfect lattice); x n = instantaneous position of the nth 
atom; x,, - x ° ~ = e~ = thermal displacement of the nth 
atom; X°n+l - -  XnO = d + A,, = separation between sites 
about which atoms are vibrating. Thus, V,, is the dis- 
placement of the nth atom from its lattice site in the 
absence of thermal motion and 

A.= V.+,- V.. 
From (2), 

= + e x p I - , q ( x O -  x 0  m 
\ n ~: rn 

+e.-era)l)} 

= N t l  + ( l /N)  ~ exp[--iq(n -- m)d] 

x (exp [- iq(V, ,  - V m + e,, - em)] ) } 

= N i l  + ( l /N)  ~ exp [- iq(n -- re)d] 

x ( e x p l - i q ( V  n -  1/',,,)1 ) 

x (exp [-iq(G, - em)l )}. 

Now, if ~2 is the mean-square static displacement, then 

(exp[-- iq(V, ,  - Vm)] ) = exp (--q 2 ~2), 

and if the Einstein model of independent oscillators of 
§ 3 is adopted, then 

(exp [- iq(  G - cm)l ) = exp ( - q  2 U2), 

where/t z is the mean-square thermal displacement. 
Thus, S(q)  has the same form as in (7) except that 

n o w  

2 W =  q20t2 + ~2). 

Unless diffraction experiments can be performed at 
different temperatures there is no way of distinguishing 
thermal from static disorder. In biological systems this 
causes a real problem because low temperatures would 
lead to freezing of water in the structure and con- 
sequent perturbation; high temperatures would lead to 
denaturation. 

In fact, the Einstein model is not the best model for 
thermal disorder. A better approximation is provided 
by the theory of Born & von Karman (1912) when 

(exp [ - iq (G - e,_ m)] ),, = exp ( - q  2 P2m). 

Here, p is defined in Note 2 of the Appendix and the 
subscript n implies an average over all sites specified by 
values of n. Using this theory, together with the model 
for static disorder based on the Einstein model (i.e. 
paracrystalline disorder of the first kind), leads to 

S ( q ) =  N( 1 + ( l /N)  ~ exp[--iq(n - m)dl 
t l  ¢ m 

x exp [_q2(~z + p2_m)]} 
/ 

= N ( 1 + ~ exp ( - i q n d )  

/ 

r icO 

× exp[_qZ((2 + p2)]}. 

Fourier transformation of this expression for S(q)  
yields a description of the structure in terms of P(x) .  
The result is 

P ( x ) =  N l 6 ( x )  + ~. (1 /2n)[n/ (~  2 + pZ)],n 
n ~e0 

× exp [ - ( x - n d ) 2 / 4 ( (  2 + P~)]/• 
J 
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Since p,, increases as n increases, the function P(x) 
consists of a series of peaks which broaden as x 
increases. Thus the system is increasingly disordered 
with increasing x. 

6. Simultaneous disorder of the second kind and 
thermal disorder 

We now repeat the analysis of the previous section 
except that we now consider the static disorder to be of 
the second kind. As before, we obtain from (2) 

S ( q ) = N  1 + ( l / N )  exp[--iq(x~--Xm + en 

= N i l  + ( l /N)  Z ( e x p [ - i q ( x ~ - x ~ ) ] )  
n --C: m 

x (exp[--iq(en -- em)] )}. (8) 

According to the Born-von Karman theory, 

(exp[-iq(en - era)] ) = exp ( - q  2 p~_,,,). (9) 

After some manipulation (see Appendix, Note 3) (8) 
and (9) yield 

S ( q ) =  N + ~, {exp( - iqd)G(q)exp( -q  2 p21) + CC 
n > 0  

+ exp (-2iqd)G2(q) exp (_q2 p~) + CC 

+ exp (-3iqd)G3(q) exp (_q2 p~) + CC 

+ ...}, (10) 

where CC denotes the complex conjugate of the 
preceding term and 

G(q) = ( exp (-iqA,,)). 

In the Einstein approximation all the Pn are identical. 
Fourier transformation of S(q) then yields the descrip- 
tion of the structure of the system 

P(x) = N (~(x) + ~ dq exp(iqx) ~. exp[-qE(p~ 
n ~ : O  

+ na2/4)l exp (-iqnd) I 

( 1 ~,0 [ zt ]1/2 
= N fi(x) + - ~  (na2/~) + p2 n 

xexp 4[(na2/4)+p~I " (11) 

7. Validity of paracrystal theories 

Strictly, the theory for disorder of the first kind, as 
exemplified by equation (2) in Blaurock & Nelander 
(1976), is only valid when N tends to infinity. [For 
further details of their treatment see our equation (13).] 
Our equation (5) which expresses the result of thermal 
disorder is valid whatever the value of N. It has been 
presumed that this is also true when the disorder is not 
thermal but a static distribution of the atomic positions 
about the lattice points. However, it is only in the limit 
N tends to infinity that the full character of this static 
distribution will be revealed. It is not clear whether in 
practice the Blaurock & Nelander value (N = 10) was 
sufficiently close to infinity for the purposes of their 
investigation. The adequacy of such an approximation 
is better investigated by simulation than by analysis. 

The same problem arises for disorder of the second 
kind where again the analysis is only valid as N tends to 
infinity. It is worth demonstrating this point for the case 
where N = 2. Then, from (1) and (2), 

P ( x ) =  2[fi(x)+ ( 1 / 2 ) 6 ( x - x  1 + x0) 

+ (1/2)f i (x-  x 0 + Xl)], 
(12) 

S (q )=  2{1 + ( 1 / 2 ) e x p [ - i q ( x l - x o ) ]  

+ (1 /2)exp[- iq(x  o - xl)]} 

= 2[ 1 + cos q(x I - x0)]. 

However, the formulation of Blaurock & Nelander 
would give, in the absence of thermal disorder, 

P ( x ) =  2[fi(x)+ ( 1 / 2 ) g ( x - d ) +  (1/2)g(x + d)!,13 ) 

S(q) = 211 + G(q) cos qd], 

where g(x) is the inverse Fourier transform of G(q). 
Comparison of (12) and (13) shows that the latter 

contains a spurious probability distribution that has no 
place in a static model; X-rays see the actual positions 
of atoms. Thus, the equation used by Blaurock & 
Nelander in their analysis of X-ray diffraction from 
myelin has no real status if N is small. 

8. Dense gas approach to disorder 

The dense gas approach as formulated here recognizes 
that, even in the absence of long-range order, there is 
order of a statistical kind (short-range order) because 
every atom excludes the others from the space which it 
occupies itself. If this exclusion is the source of short- 
range order then an expression for S(q) can be derived. 
Thus modern theories are conceptually much simpler 
than the paracrystal theory for disorder of the second 
kind. 

Equation (2) can be rewritten in the form 

S ( q ) =  N{1 + ( N / V ) . f [ g ( x ) -  1 ] e x p ( - i q x ) d x } ,  
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where V is the volume occupied by the assembly. The 
distribution function g(x) is defined so that (N/V)  
g(x) x dx is the probability of finding an atom between 
distances x and x + dx from an origin which is an 
arbitrarily chosen atom centre and then (N/V)g(x)  is a 
probability density. [In two and three dimensions g(x) 
is the 'radial distribution function'.] The total cor- 
relation function is defined by 

h(x) = g(x) - 1, 

so that 

S ( q ) = N [ 1  + (N/V)  f h ( x ) e x p ( - i q x )  dx]. 

Following Ornstein & Zernicke (1914), it is customary 
to argue that the total correlation between two atoms 
arises from: (i) the direct influence of one atom on the 
other - described by the direct correlation function 
C(x) and (ii) an indirect influence via a third atom. 
Thus, 

h(x) = C(x)  + (N/V)  f h ( x ' ) C ( x -  x ' ) d x ' .  

We can now use the properties of C(x) to calculate 
h(x) and hence S(q). It has been repeatedly proved 
(e.g. Woodhead-Galloway, Gaskell & March, 1968) 
that asymptotically (i.e. for large x) 

C ( x )  = -~p(x) /kT,  

where k is Boltzmann's constant, T the absolute tem- 
perature and ~p(x) the intermolecular potential function. 
In our formulation 

{ c~ x <d  
~o(x) = 0 x > d '  

where d is the length of an 'atom'. Hence, 

and 
C ( x ) =  0 x>_d 

h(x) = - 1  x < d. 

Experimental results from a variety of liquids indicate 
that, except when q tends to 0, the simple potential 
function used here is perfectly adequate (e.g. Enderby, 
1972). Note that q~(x) defined here is the one- 
dimensional case of the 'hard sphere' model which is 
often used to predict 'allowed' conformations of bio- 
logical macromolecules. 

This formulation (Lebowitz & Percus, 1966) of 
short-range order is exact and has an explicit solution 
in one dimension (Thiele, 1963; Wertheim, 1963). 
Then, 

S ( q ) =  [1 + (A/~Z) sin2(O/2)+ (B/~) sin(~)] -1, 
~=qd,  (14) 

where 

A = 4r/2/(1 -- r/) 2, 

B = 2 r / / ( 1 -  r/) 

and the packing fraction r/is defined by 

t 1 = Nd/V, (15) 

which represents the fraction of space occupied by 
atoms. 

Fig. 1 shows S(q) plotted against ~for r /= 0.9. Note 
that even for a system which possesses only short- 
range order S(q), and hence I(q), exhibits a series of 
peaks. These peaks decrease in height and increase in 
width with increasing q. The dependence of S(q) on r/ 
can also be calculated in two (Woodhead-Galloway & 
Machin, 1976b) and three (Thiele, 1963; Wertheim, 
1963) dimensions. 

9. Diffraction from d i s o r d e r e d  s y s t e m s  

We have seen that for an infinite array of equispaced 
atoms (i.e. a crystal) S(q) is an infinite array of delta 
functions (the reciprocal lattice). The introduction of 
disorder into this ideal system affects S(q) in several 
ways. As a result the following effects can be observed 
in the diffraction pattern, I(q): continuous diffuse 
scatter appears between the peaks which may them- 
selves become less intense, broader and even displaced. 

It is clear from (7), and from the discussion of § 5, 
that thermal disorder or static disorder of the first kind 
has two effects in q space. Diffuse intensity given by [1 
- exp( -2W)]  appears and increases as q increases. 
Also the peaks become less intense as q increases - 
their amplitude decays as exp ( -2W) .  Neither the 

o 2~. 

Fig. 1. S(q) for a dense gas with a packing fraction, q, defined in 
(15), of 0.9 plotted against ~ as defined in (14). The dotted 
envelope of the peaks falls off approximately as 1/~. 
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positions nor the widths of the peaks are affected. If  N, 
the number of atoms, is infinite then the peaks have no 
finite width; finite peak width is the consequence of the 
finite size of a real array.  

If the system has no long-range order the diffraction 
pattern departs more radically from the ideal case. For 
q increasing, the peaks not only become less intense but 
they also become broader and their positions may be 
displaced from those expected of an ordered array as 
shown in Fig. 2. Fig. 3 shows a computed example of 
such a diffraction pattern - the peaks are not well 
resolved and it seems pointless to separate the pattern 
into continuous diffuse scatter with even degraded 
lattice peaks superposed upon it. In any case, such a 
separation would be technically very difficult - even for 
highly crystalline fibres; the estimation of peak inten- 
sities above diffuse background is not trivial (Langridge 
et al., 1960). For the dense-gas model described in § 8 

18-  

1 6 .  / '  
14rr 

12n 

10/1' 

8'n" 

6rr 

4 .  

2 .  

, . , . . , i i ! 

o ~ 2 3 4 s 6 7 8 9 

Fig. 2. Comparison of peak positions in S(q) for a dense gas and a 
crystal. The continuous line joins the ~ values, defined in (14), 
predicted by a crystal model which has a repeat distance a; each 
peak may be specified by the value of an integer h. Dots represent 
the positions of corresponding peaks calculated for a dense gas in 
which atoms have length a and the packing fraction, r/5 defined in 
(15), has a value of 0.9. Asymptotically the position of the hth 
peak is at ~ = ~(4h - I)/2. 

I i.o 

I-4 
0-5 

o 
2w  4w  6w  

Fig. 3. I(q) computed for a stack of lipid bilayers, using the theory 
of a dense gas, plotted against ( as defined in (14). S(q) was 
taken from Fig. 1 and f(q), of (3), was n sin (qd)/qd where n is 
related to the number of electrons in a bilayer. 

the shape of S(q) depends only on the packing fraction 
r/. Fig. 4 shows how the first peak position varies as r/ 
increases from 0 to 1. 

10. Conclusions 

Because our analysis may use some unfamiliar con- 
cepts and notation we conclude by summarizing the 
more important results. Throughout this section we use 
the term 'a tom'  in the general sense of § 2. 

(1) Paracrystal  disorder of the first kind refers to a 
spatially disordered crystal. The mineral phase in bone 
may well provide an example (Wheeler & Lewis, 1977). 
In practice, spatial disorder and thermal vibrations are 
unlikely to be distinguished for biological systems 
because the distinction requires experiments to be 
performed over a range of temperatures. Strictly 
speaking this spatial disorder is probably only defined 
analytically for an effectively infinite array of atoms 
and not for finite structures. 

(2) Paracrystal  disorder of the second kind refers to 
a system with no long-range order. Thus the system has 
no underlying lattice, in the usual crystallographic 
sense. Equation (11) shows that for a real system this 
theory leads to an extremely complicated description of 
its structure. Practical application of the paracrystal  
theory with disorder of the second kind is very difficult 
because of the need to define distribution functions and 
to assign values to the many parameters involved. 
Strictly speaking this analytical description also only 
applies to an infinite array of atoms and not to a finite 
structure. 

(3) Modern theories of dense gases provide a 
conceptually simple model for systems with no long- 
range order. The theory is probably valid for finite 
systems and its application is straightforward. Both 
peaks and diffuse scatter arise naturally from a single 

T 2"n" - - t 

3rr/2 _ 
I 

I 
! 

I 
I u l u i 

0 2 4 6 8 10 
I OT I 

Fig. 4. Dependence of the first peak position in S(q) for a dense gas 
as a function of the packing fraction, r/, defined in (15). Peak 
positions are specified by ~, as defined in (14). 
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expression for S(q). Note that although we have 
described this approach as a 'liquid' theory we do not 
imply that atoms diffuse as in a liquid. We simply mean 
that their arrangement has only the short-range order 
characteristic of liquids. Notice that in practice S(q) is 
defined very largely by one parameter, the packing 
fraction. 

(4) The appearance of peaks in I(q), the diffraction 
pattern from a biological system, does not necessarily 
imply that the system has any underlying lattice. An 
example of a system computed using (14) (a stack of 
lipid bilayers) in which peaks appear, even in the 
absence of long-range order, is provided by Fig. 3. 

Thus, biological systems may often be less ordered 
than conventional descriptions might imply. There is a 
priori no good reason to suppose that the arrangement 
of molecules in a biological system is likely to possess 
long-range order, i.e. to be crystalline. Indeed, Williams 
(1977) has written that 'the staggering feature of all 
biological chemistry is organization without simple 
order'. 

A P P E N D I X  
Mathematical notes 

Note 1 

If u,, is normally distributed, i.e. according to 

g(u,)  = (1/zd/2~ 0 exp (-u~Z/~t2), 

then (4) is exact. It is easy to check this to the order of 
the leading terms by expansion and comparison. 

oo 
2 ( u . )  = f u~.g(u.) du. 

--CO 

= (~t2/77/2) ~ x 2 exp ( - x  2) dx 
--CO 

= ~2/2. 
Thus, 

2 exp[--(q2/2)(un)] ~ 1 -- q2tt2/4, 

whereas 

( exp (--iqu n) ) ~_ ( 1 -- iqu n -- q2 uZ /2 ... ) 
oo 

_ _  2 2 2 1 - (qV2.~ 1'2) f exp ( -u . / . )u .  du. 
- - 0 0  

(since ( i qu . )  = O) 
oo 

~-- 1 -- (q2t~2/2:rrl/2) f X 2 exp(--x 2) dx 
- -00  

= 1 -- q2 a 2/4. 

Note 2 

d '~mdq h 

P~= f - ~  - ~  - -  coth (hc%/2k T)[1 - cos (qnd)l. 
O,)q 

0 

Here, the symbols not defined in the main paper are: 
~q, the phonon frequency as a function of wave 
number; M, the atomic mass; h, Planck's constant; 7", 
absolute temperature; h = h/2rc. In the Einstein model, 
coo is independent of q and p2 tends to p2 independently 
of n. However, more generally, p, tends to a maximum 
value ofp as n increases. 

Note 3 

Here we derive (10) from (8) using (9). From (8) and 
(9) we obtain 

S(q) N ( i - = + 7~ {exp[- iq(x°+ x°)] exp ( -q  2p~) 
\ n > 0  

+ CC + exp[- iq (  x°n+2 - x °)l exp ( - q  2 p22) 

+ CC + e x p [ - i q ( x  ° n+3 - x°)] exp ( - q  2 P~) 

+ CC + . . . } )  

= U + ( ~  { e x p [ - i q ( x ° + l -  x°n)] exp (--q2pl z) 
\n> 0 

+ CC + exp[ - iq (  x ° .+z -  x,+° 1)] 

× exp[- iq(x°+ l -  x°)] 

x exp (_q2 p~) + CC + ... } 

= N + ~ t e x p ( - i q d ) ( e x p ( - i q A , ) )  
n > 0  

x exp (_q2 pl 2) + CC + exp ( -2 iqd)  

× (exp (--iqAn+ 1) exp (--iqAn)) 

× exp (_q2 p~) + CC + ... } 

= N + ~ { e x p ( - i q d ) G ( q ) e x p ( - q  2 p~)+ CC 
n > 0  

+ exp (-2iqd)G2(q) exp (__q2 p2) + CC 

--b . . . / ,  

which is the required result where CC is the complex 
conjugate of the preceding term. 

The approximations made above are that, for 
example, 

(exp (- iqA,+ 2) exp ( - iqA,+ 1) exp ( - iqA  ,) ) 

= (exp (--iqA,, +2) ) (exp (--iqA,, +~) ) ( exp (--iqA,,)) 

and 

(exp(- iqAn+2) ) = ( exp ( - i qAn+l ) )  

= ( e x p ( - i q A , , ) ) =  G(q). 

In making separations like this it is assumed that 
successive atoms are laid down without reference to the 
pre-existing structure except that there is a statistical 
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distribution function g(A), which might, for example, be 
Gaussian when 

g(A) = (n~t2) -1/2 exp ( -  -42/Ot2). 

As N tends to infinity all possible configurations will be 
assumed during the aggregation process. The general 
term in the series of (10) is 

Gn(q) exp (_q2 p2) cos (qnd), 

which approximates to 

exp {_qE[(ntt2/4) + p2]} cos (qnd) 

if g(A) is Gaussian. Note that d is only defined for dis- 
order of the second kind (as in § 5) if 

( Z , )  = 0. 

This condition is essentially a description of a disor- 
dered model of the kind we are investigating, i.e. one in 
which all possible 'atomic'  configurations are assumed. 
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Abstract  

The electron-density distribution in crystalline silicon 
was refined with a three-parameter density model which 
was originally designed by Brill. The same data sets 

0567-7394/80/020205-06501.00 

were used as by other authors [Price, Maslen & Mair 
(PMM) (1978). Acta Cryst. A34, 183-193; Hansen 
& Coppens (1978). Acta Cryst. A34, 909-921] in re- 
fining their multipole models. The data sets are (1) the  
15 Mo K~ room-temperature data of Aldred & Hart 
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